Get Started
Launch the interactive notebook tutorial for the lidar Python
package with Google Colab now:
A Quick Example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | import os
import pkg_resources
from lidar import *
# identify the sample data directory of the package
package_name = 'lidar'
data_dir = pkg_resources.resource_filename(package_name, 'data/')
# use the sample dem. Change it to your own dem if needed
in_dem = os.path.join(data_dir, 'dem.tif')
# set the output directory
out_dir = os.getcwd()
# parameters for identifying sinks and delineating nested depressions
min_size = 1000 # minimum number of pixels as a depression
min_depth = 0.5 # minimum depth as a depression
interval = 0.3 # slicing interval for the level-set method
bool_shp = True # output shapefiles for each individual level
# extracting sinks based on user-defined minimum depression size
out_dem = os.path.join(out_dir, "median.tif")
in_dem = MedianFilter(in_dem, kernel_size=3, out_file=out_dem)
sink_path = ExtractSinks(in_dem, min_size, out_dir)
dep_id_path, dep_level_path = DelineateDepressions(sink_path,
min_size,
min_depth,
interval,
out_dir,
bool_shp)
print('Results are saved in: {}'.format(out_dir))
|
lidar GUI
lidar also provides a Graphical User Interface (GUI), which can be
invoked using the following Python script:
Video tutorials
Delineating nested surface depressions and catchments using ArcGIS Pro
Delineating nested surface depressions and catchments using ArcMap