Skip to content

slicing module

Module for the level-set algorithm.

Depression

The class for storing depression info.

Source code in lidar/slicing.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class Depression:
    """The class for storing depression info."""

    def __init__(
        self,
        id,
        level,
        count,
        size,
        volume,
        meanDepth,
        maxDepth,
        minElev,
        bndElev,
        inNbrId,
        regionId,
        perimeter,
        major_axis,
        minor_axis,
        elongatedness,
        eccentricity,
        orientation,
        area_bbox_ratio,
    ):
        self.id = id
        self.level = level
        self.count = count
        self.size = size
        self.volume = volume
        self.meanDepth = meanDepth
        self.maxDepth = maxDepth
        self.minElev = minElev
        self.bndElev = bndElev
        self.inNbrId = inNbrId
        self.regionId = regionId
        self.perimeter = perimeter
        self.major_axis = major_axis
        self.minor_axis = minor_axis
        self.elongatedness = elongatedness
        self.eccentricity = eccentricity
        self.orientation = orientation
        self.area_bbox_ratio = area_bbox_ratio

DelineateDepressions(in_sink, min_size, min_depth, interval, out_dir, bool_level_shp=False)

Delineates nested depressions.

Parameters:

Name Type Description Default
in_sink str

The file path to the sink image.

required
min_size int

The minimum number of pixels to be considered as a depression.

required
min_depth float

The minimum depth to be considered as a depression.

required
interval float

The slicing interval.

required
out_dir str

The file path to the output directory.

required
bool_level_shp bool

Whether to generate shapefiles for each individual level. Defaults to False.

False

Returns:

Name Type Description
tuple

The output level image, and the output object image.

Source code in lidar/slicing.py
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
def DelineateDepressions(
    in_sink, min_size, min_depth, interval, out_dir, bool_level_shp=False
):
    """Delineates nested depressions.

    Args:
        in_sink (str): The file path to the sink image.
        min_size (int): The minimum number of pixels to be considered as a depression.
        min_depth (float): The minimum depth to be considered as a depression.
        interval (float): The slicing interval.
        out_dir (str): The file path to the output directory.
        bool_level_shp (bool, optional): Whether to generate shapefiles for each individual level. Defaults to False.

    Returns:
        tuple: The output level image, and the output object image.
    """
    # The following parameters can be used by default
    interval = interval * (-1)  # convert slicing interval to negative value

    out_img_dir = os.path.join(out_dir, "img-level")
    out_shp_dir = os.path.join(out_dir, "shp-level")
    out_obj_file = os.path.join(out_dir, "depression_id.tif")
    out_level_file = os.path.join(out_dir, "depression_level.tif")
    out_vec_file = os.path.join(out_dir, "depressions.shp")
    out_csv_file = os.path.join(out_dir, "depressions_info.csv")

    init_time = time.time()

    # delete contents in output folder if existing
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if os.path.exists(out_img_dir):
        shutil.rmtree(out_img_dir)
    os.mkdir(out_img_dir)
    if os.path.exists(out_shp_dir):
        shutil.rmtree(out_shp_dir)
    os.mkdir(out_shp_dir)

    print("Reading data ...")
    read_time = time.time()

    image = rd.LoadGDAL(in_sink)
    no_data_raw, projection, geotransform, resolution = getMetadata(image)
    rows_cols = image.shape
    print("rows, cols: " + str(rows_cols))
    print("Pixel resolution: " + str(resolution))
    print("Read data time: {:.4f} seconds".format(time.time() - read_time))

    min_elev, max_elev, no_data = get_min_max_nodata(
        image
    )  # set nodata value to a large value, e.g., 9999
    # initialize output image
    obj_image = np.zeros(
        image.shape
    )  # output depression image with unique id for each nested depression
    level_image = np.zeros(image.shape)  # output depression level image

    # nb_labels is the total number of objects. 0 represents background object.
    label_objects, nb_labels = regionGroup(image, min_size, no_data)
    # regions = measure.regionprops(label_objects, image, coordinates='xy')
    regions = measure.regionprops(label_objects, image)
    del image  # delete the original image to save memory
    prep_time = time.time()
    print("Data preparation time: {:.4f} seconds".format(prep_time - init_time))
    print("Total number of regions: {}".format(nb_labels))

    identify_time = time.time()

    obj_uid = 0
    global_dep_list = []

    # loop through regions and identify nested depressions in each region using level-set method
    for region in regions:  # iterate through each depression region
        region_id = region.label
        img = region.intensity_image  # dem subset for each region
        bbox = region.bbox

        # save all input parameters needed for level set methods as a dict
        image_paras = set_image_paras(
            no_data, min_size, min_depth, interval, resolution
        )

        # execute level set methods
        out_obj, dep_list = levelSet(img, region_id, obj_uid, image_paras)

        for dep in dep_list:
            global_dep_list.append(dep)

        obj_uid += len(dep_list)

        level_obj = obj_to_level(out_obj, global_dep_list)
        obj_image = writeObject(obj_image, out_obj, bbox)  # write region to whole image
        level_image = writeObject(level_image, level_obj, bbox)

        del out_obj, level_obj, region

    del regions, label_objects

    print("=========== Run time statistics =========== ")
    print("(rows, cols):\t\t\t {0}".format(str(rows_cols)))
    print("Pixel resolution:\t\t {0} m".format(str(resolution)))
    print("Number of regions:\t\t {0}".format(str(nb_labels)))
    print("Data preparation time:\t\t {:.4f} s".format(prep_time - init_time))
    print("Identify level time:\t\t {:.4f} s".format(time.time() - identify_time))

    write_time = time.time()
    # writeRaster(obj_image, out_obj_file, in_sink)
    # writeRaster(level_image, out_level_file, in_sink)
    # SaveGDAL function can only save data as floating point
    level_image = np2rdarray(
        np.int32(level_image), no_data_raw, projection, geotransform
    )
    rd.SaveGDAL(out_level_file, level_image)
    obj_image = np2rdarray(np.int32(obj_image), no_data_raw, projection, geotransform)
    rd.SaveGDAL(out_obj_file, obj_image)
    print("Write image time:\t\t {:.4f} s".format(time.time() - write_time))

    # converting object image to polygon
    level_time = time.time()
    polygonize(out_obj_file, out_vec_file)
    write_dep_csv(global_dep_list, out_csv_file)
    print("Polygonize time:\t\t {:.4f} s".format(time.time() - level_time))

    # extracting polygons for each individual level
    if bool_level_shp:
        level_time = time.time()
        extract_levels(
            level_image,
            obj_image,
            min_size,
            no_data,
            out_img_dir,
            out_shp_dir,
            in_sink,
            False,
        )
        print("Extract level time:\t\t {:.4f} s".format(time.time() - level_time))
        shutil.rmtree(out_img_dir)
    else:
        shutil.rmtree(out_shp_dir)
        shutil.rmtree(out_img_dir)
    del level_image
    del obj_image

    end_time = time.time()
    print("Total run time:\t\t\t {:.4f} s".format(end_time - init_time))
    return out_obj_file, out_level_file

extract_levels(level_img, obj_img, min_size, no_data, out_img_dir, out_shp_dir, template, bool_comb=False)

Extracts individual level image.

Parameters:

Name Type Description Default
level_img array

The numpy array containing the level image.

required
obj_img array

The numpy array containing the object image.

required
min_size int

The minimum number of pixels to be considered as a depression.

required
no_data float

The no_data value of the image.

required
out_img_dir str

The output image directory.

required
out_shp_dir str

The output shapefile directory.

required
template str

The file path to the template image.

required
bool_comb bool

Whether to extract combined level image. Defaults to False.

False

Returns:

Name Type Description
tuple

The single level image, properties of region grouped level image, properties of region grouped object image.

Source code in lidar/slicing.py
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def extract_levels(
    level_img,
    obj_img,
    min_size,
    no_data,
    out_img_dir,
    out_shp_dir,
    template,
    bool_comb=False,
):
    """Extracts individual level image.

    Args:
        level_img (np.array): The numpy array containing the level image.
        obj_img (np.array): The numpy array containing the object image.
        min_size (int): The minimum number of pixels to be considered as a depression.
        no_data (float): The no_data value of the image.
        out_img_dir (str): The output image directory.
        out_shp_dir (str): The output shapefile directory.
        template (str): The file path to the template image.
        bool_comb (bool, optional): Whether to extract combined level image. Defaults to False.

    Returns:
        tuple: The single level image, properties of region grouped level image, properties of region grouped object image.
    """
    max_level = int(np.max(level_img))
    combined_images = []
    single_images = []
    img = np.copy(level_img)

    digits = (
        int(math.log10(max_level)) + 1
    )  # determine the level number of output file name
    for i in range(1, max_level + 1):
        img[(img > 0) & (img <= i)] = i
        tmp_img = np.copy(img)
        tmp_img[tmp_img > i] = 0
        if bool_comb == True:  # whether to extract combined level image
            combined_images.append(np.copy(tmp_img))
            filename_combined = "Combined_level_" + str(i).zfill(digits) + ".tif"
            out_file = os.path.join(out_shp_dir, filename_combined)
            writeRaster(tmp_img, out_file, template)

        lbl_objects, n_labels = regionGroup(tmp_img, min_size, no_data)
        # regs = measure.regionprops(lbl_objects, level_img, coordinates='xy')
        regs = measure.regionprops(lbl_objects, level_img)
        # regs2 = measure.regionprops(lbl_objects, obj_img, coordinates='xy')
        regs2 = measure.regionprops(lbl_objects, obj_img)

        sin_img = np.zeros(img.shape)

        for index, reg in enumerate(regs):
            uid = regs2[index].min_intensity
            if reg.max_intensity >= i:
                bbox = reg.bbox
                tmp_img = np.zeros(reg.image.shape)
                tmp_img[reg.image] = uid
                writeObject(sin_img, tmp_img, bbox)

        # for reg in regs:
        #     if reg.max_intensity >= i:
        #         bbox = reg.bbox
        #         tmp_img = np.zeros(reg.image.shape)
        #         tmp_img[reg.image] = i
        #         writeObject(sin_img, tmp_img, bbox)
        del tmp_img
        # single_images.append(np.copy(sin_img))
        filename_single = "Single_level_" + str(i).zfill(digits) + ".shp"
        out_shp_file = os.path.join(out_shp_dir, filename_single)

        out_img_file = os.path.join(out_img_dir, "tmp.tif")
        writeRaster(sin_img, out_img_file, template)
        polygonize(out_img_file, out_shp_file)
        # writeRaster(sin_img,out_file,template)
        del sin_img, regs, regs2

    del img
    return True

getMetadata(img)

Gets rdarray metadata.

Parameters:

Name Type Description Default
img rdarray

The richDEM array containing the image.

required

Returns:

Name Type Description
tuple

no_data, projection, geotransform, cell_size

Source code in lidar/slicing.py
694
695
696
697
698
699
700
701
702
703
704
705
706
707
def getMetadata(img):
    """Gets rdarray metadata.

    Args:
        img (rdarray): The richDEM array containing the image.

    Returns:
        tuple: no_data, projection, geotransform, cell_size
    """
    no_data = img.no_data
    projection = img.projection
    geotransform = img.geotransform
    cell_size = np.round(geotransform[1], decimals=2)
    return no_data, projection, geotransform, cell_size

get_image_paras(image_paras)

Gets image parameters.

Parameters:

Name Type Description Default
image_paras dict

The dictionary containing image parameters.

required

Returns:

Name Type Description
tuple

A tuple containing no_data, min_size, min_depth, interval, resolution.

Source code in lidar/slicing.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def get_image_paras(image_paras):
    """Gets image parameters.

    Args:
        image_paras (dict): The dictionary containing image parameters.

    Returns:
        tuple: A tuple containing no_data, min_size, min_depth, interval, resolution.
    """
    no_data = image_paras["no_data"]
    min_size = image_paras["min_size"]
    min_depth = image_paras["min_depth"]
    interval = image_paras["interval"]
    resolution = image_paras["resolution"]
    return no_data, min_size, min_depth, interval, resolution

get_min_max_nodata(image)

Gets the minimum, maximum, and no_data value of a numpy array.

Parameters:

Name Type Description Default
image array

The numpy array containing the image.

required

Returns:

Name Type Description
tuple

The minimum, maximum, and no_data value.

Source code in lidar/slicing.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def get_min_max_nodata(image):
    """Gets the minimum, maximum, and no_data value of a numpy array.

    Args:
        image (np.array): The numpy array containing the image.

    Returns:
        tuple: The minimum, maximum, and no_data value.
    """
    max_elev = np.max(image)
    nodata = (
        pow(10, math.floor(math.log10(np.max(image))) + 2) - 1
    )  # assign no data value
    image[image <= 0] = nodata  # change no data value
    min_elev = np.min(image)
    return min_elev, max_elev, nodata

img_to_shp(in_img_dir, out_shp_dir)

Converts images in a selected folder to shapefiles

Parameters:

Name Type Description Default
in_img_dir str

The input iimage directory.

required
out_shp_dir str

The output shapefile directory.

required
Source code in lidar/slicing.py
228
229
230
231
232
233
234
235
236
237
238
239
240
def img_to_shp(in_img_dir, out_shp_dir):
    """Converts images in a selected folder to shapefiles

    Args:
        in_img_dir (str): The input iimage directory.
        out_shp_dir (str): The output shapefile directory.
    """
    img_files = os.listdir(in_img_dir)
    for img_file in img_files:
        if img_file.endswith(".tif"):
            img_filename = os.path.join(in_img_dir, img_file)
            shp_filename = os.path.join(out_shp_dir, img_file.replace("tif", "shp"))
            polygonize(img_filename, shp_filename)

levelSet(img, region_id, obj_uid, image_paras)

Identifies nested depressions using level-set method.

Parameters:

Name Type Description Default
img array

The numpy array containing the image.

required
region_id int

The unique id of the region.

required
obj_uid int

The object id of the region.

required
image_paras dict

The dictionary containing image parameters.

required

Returns:

Name Type Description
tuple

(level image, depression list)

Source code in lidar/slicing.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def levelSet(img, region_id, obj_uid, image_paras):
    """Identifies nested depressions using level-set method.

    Args:
        img (np.array): The numpy array containing the image.
        region_id (int): The unique id of the region.
        obj_uid (int): The object id of the region.
        image_paras (dict): The dictionary containing image parameters.

    Returns:
        tuple: (level image, depression list)
    """
    # unzip input parameters from dict
    no_data, min_size, min_depth, interval, resolution = get_image_paras(image_paras)

    level_img = np.zeros(img.shape)  # init output level image
    # flood_img = np.zeros(img.shape)     # init output flood time image

    max_elev = np.max(img[img != no_data])
    img[img == 0] = no_data
    min_elev = np.min(img)

    print("Processing Region # {} ...".format(region_id))
    # print("=========================================================================== Region: {}".format(region_id))
    unique_id = obj_uid
    parent_ids = {}  # store current parent depressions
    nbr_ids = {}  # store the inner-neighbor ids of current parent depressions
    dep_list = []  # list for storing depressions
    (rows, cols) = img.shape
    if rows == 1 or cols == 1:  # if the depression is a horizontal or vertical line
        cells = rows * cols
        size = cells * pow(resolution, 2)  # depression size
        max_depth = max_elev - min_elev
        mean_depth = (max_elev * cells - np.sum(img)) / cells
        volume = mean_depth * cells * pow(resolution, 2)
        unique_id += 1
        level = 1
        perimeter = cells * resolution
        major_axis = cells * resolution
        minor_axis = resolution
        area_bbox_ratio = 1
        if rows == 1:
            elongatedness = cols
            eccentricity = 1
            orientation = 0
        else:
            elongatedness = rows
            eccentricity = 1
            orientation = 90

        dep_list.append(
            Depression(
                unique_id,
                level,
                cells,
                size,
                volume,
                mean_depth,
                max_depth,
                min_elev,
                max_elev,
                [],
                region_id,
                perimeter,
                major_axis,
                minor_axis,
                elongatedness,
                eccentricity,
                orientation,
                area_bbox_ratio,
            )
        )
        level_img = np.ones(img.shape)
        del img
        return level_img, dep_list

    for elev in np.arange(
        max_elev, min_elev, interval
    ):  # slicing operation using top-down approach
        img[img > elev] = 0  # set elevation higher than xy-plane to zero
        label_objects, nb_labels = regionGroup(img, min_size, no_data)
        # print('slicing elev = {:.2f}, number of objects = {}'.format(elev, nb_labels))
        if nb_labels == 0:  # if slicing results in no objects, quit
            break

        # objects = measure.regionprops(label_objects, img, coordinates='xy')
        objects = measure.regionprops(label_objects, img)
        for i, object in enumerate(objects):
            (row, col) = object.coords[0]  # get a boundary cell
            bbox = object.bbox

            if len(parent_ids) == 0:  # This is the first depression, maximum depression
                # print("This is the maximum depression extent.")
                cells = object.area
                size = cells * pow(resolution, 2)  # depression size
                max_depth = (
                    object.max_intensity - object.min_intensity
                )  # depression max depth
                mean_depth = (
                    object.max_intensity * cells - np.sum(object.intensity_image)
                ) / cells  # depression mean depth
                volume = mean_depth * cells * pow(resolution, 2)  # depression volume
                # spill_elev = object.max_intensity   # to be implemented
                min_elev = object.min_intensity  # depression min elevation
                max_elev = object.max_intensity  # depression max elevation
                # print("size = {}, max depth = {:.2f}, mean depth = {:.2f}, volume = {:.2f}, spill elev = {:.2f}".format(
                #     size, max_depth, mean_depth, volume, spill_elev))
                unique_id += 1
                level = 1
                perimeter = object.perimeter * resolution
                major_axis = object.major_axis_length * resolution
                minor_axis = object.minor_axis_length * resolution
                if minor_axis == 0:
                    minor_axis = resolution
                elongatedness = major_axis * 1.0 / minor_axis
                eccentricity = object.eccentricity
                orientation = object.orientation / 3.1415 * 180
                area_bbox_ratio = object.extent
                dep_list.append(
                    Depression(
                        unique_id,
                        level,
                        cells,
                        size,
                        volume,
                        mean_depth,
                        max_depth,
                        min_elev,
                        max_elev,
                        [],
                        region_id,
                        perimeter,
                        major_axis,
                        minor_axis,
                        elongatedness,
                        eccentricity,
                        orientation,
                        area_bbox_ratio,
                    )
                )
                parent_ids[unique_id] = 0  # number of inner neighbors
                nbr_ids[unique_id] = []  # ids of inner neighbors
                tmp_img = np.zeros(object.image.shape)
                tmp_img[object.image] = unique_id
                writeObject(
                    level_img, tmp_img, bbox
                )  # write the object to the final image

            else:  # identify inner neighbors of parent depressions
                # print("current id: {}".format(parent_ids.keys()))
                # (row, col) = object.coords[0]
                parent_id = level_img[row, col]
                parent_ids[parent_id] += 1
                nbr_ids[parent_id].append(i)

        for (
            key
        ) in (
            parent_ids.copy()
        ):  # check how many inner neighbors each upper level depression has
            if parent_ids[key] > 1:  # if the parent has two or more children
                # print("Object id: {} has split into {} objects".format(key, parent_ids[key]))
                new_parent_keys = nbr_ids[key]
                for new_key in new_parent_keys:
                    object = objects[new_key]
                    cells = object.area
                    size = cells * pow(resolution, 2)
                    max_depth = object.max_intensity - object.min_intensity
                    mean_depth = (
                        object.max_intensity * cells - np.sum(object.intensity_image)
                    ) / cells
                    volume = mean_depth * cells * pow(resolution, 2)
                    spill_elev = object.max_intensity
                    min_elev = object.min_intensity
                    max_elev = object.max_intensity
                    # print("  --  size = {}, max depth = {:.2f}, mean depth = {:.2f}, volume = {:.2f}, spill elev = {:.2f}".format(
                    #         size, max_depth, mean_depth, volume, spill_elev))
                    unique_id += 1
                    level = 1
                    perimeter = object.perimeter * resolution
                    major_axis = object.major_axis_length * resolution
                    minor_axis = object.minor_axis_length * resolution
                    if minor_axis == 0:
                        minor_axis = resolution
                    elongatedness = major_axis * 1.0 / minor_axis
                    eccentricity = object.eccentricity
                    orientation = object.orientation / 3.1415 * 180
                    area_bbox_ratio = object.extent
                    dep_list.append(
                        Depression(
                            unique_id,
                            level,
                            cells,
                            size,
                            volume,
                            mean_depth,
                            max_depth,
                            min_elev,
                            max_elev,
                            [],
                            region_id,
                            perimeter,
                            major_axis,
                            minor_axis,
                            elongatedness,
                            eccentricity,
                            orientation,
                            area_bbox_ratio,
                        )
                    )
                    dep_list[key - 1 - obj_uid].inNbrId.append(unique_id)
                    parent_ids[unique_id] = 0
                    nbr_ids[unique_id] = []
                    bbox = object.bbox
                    tmp_img = np.zeros(object.image.shape)
                    tmp_img[object.image] = unique_id
                    writeObject(level_img, tmp_img, bbox)

                if key in parent_ids.keys():  # remove parent id that has split
                    parent_ids.pop(key)
            else:
                parent_ids[key] = 0  # if a parent depression has not split, keep it
                nbr_ids[key] = []

    # for dep in dep_list:
    #     print("id: {} has children {}".format(dep.id, dep.inNbrId))
    dep_list = updateLevel(
        dep_list, obj_uid
    )  # update the inner neighbors of each depression
    # for dep in dep_list:
    #     print("id: {} is level {}".format(dep.id, dep.level))
    del img

    return level_img, dep_list

np2rdarray(in_array, no_data, projection, geotransform)

Converts numpy array to rdarray.

Parameters:

Name Type Description Default
in_array array

The input numpy array containing the image.

required
no_data float

The no_data value of the image.

required
projection str

The projection coordinate system of the image.

required
geotransform str

The geotransform of the image.

required

Returns:

Name Type Description
rdarray

The richDEM array containing the image.

Source code in lidar/slicing.py
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
def np2rdarray(in_array, no_data, projection, geotransform):
    """Converts numpy array to rdarray.

    Args:
        in_array (np.array): The input numpy array containing the image.
        no_data (float): The no_data value of the image.
        projection (str): The projection coordinate system of the image.
        geotransform (str): The geotransform of the image.

    Returns:
        rdarray: The richDEM array containing the image.
    """
    out_array = rd.rdarray(in_array, no_data=no_data)
    out_array.projection = projection
    out_array.geotransform = geotransform
    return out_array

obj_to_level(obj_img, dep_list)

Derives depression level image based on the depression id image and depression list.

Parameters:

Name Type Description Default
obj_img array

The numpy array containing the object image.

required
dep_list list

A list containing depression info.

required

Returns:

Type Description

np.array: The numpy array containing the object level image.

Source code in lidar/slicing.py
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
def obj_to_level(obj_img, dep_list):
    """Derives depression level image based on the depression id image and depression list.

    Args:
        obj_img (np.array): The numpy array containing the object image.
        dep_list (list): A list containing depression info.

    Returns:
        np.array: The numpy array containing the object level image.
    """
    level_img = np.copy(obj_img)

    max_id = int(np.max(level_img))
    # print("max id = " + str(max_id))
    if max_id > 0:
        min_id = int(np.min(level_img[np.nonzero(level_img)]))
        # print("min_id = " + str(min_id))
        for i in range(min_id, max_id + 1):
            level_img[level_img == i] = dep_list[i - 1].level + max_id
    level_img = level_img - max_id

    return level_img

polygonize(img, shp_path)

Converts a raster image to vector.

Parameters:

Name Type Description Default
img str

File path to the input image.

required
shp_path str

File path to the output shapefile.

required
Source code in lidar/slicing.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def polygonize(img, shp_path):
    """Converts a raster image to vector.

    Args:
        img (str): File path to the input image.
        shp_path (str): File path to the output shapefile.
    """
    # mapping between gdal type and ogr field type
    type_mapping = {
        gdal.GDT_Byte: ogr.OFTInteger,
        gdal.GDT_UInt16: ogr.OFTInteger,
        gdal.GDT_Int16: ogr.OFTInteger,
        gdal.GDT_UInt32: ogr.OFTInteger,
        gdal.GDT_Int32: ogr.OFTInteger,
        gdal.GDT_Float32: ogr.OFTReal,
        gdal.GDT_Float64: ogr.OFTReal,
        gdal.GDT_CInt16: ogr.OFTInteger,
        gdal.GDT_CInt32: ogr.OFTInteger,
        gdal.GDT_CFloat32: ogr.OFTReal,
        gdal.GDT_CFloat64: ogr.OFTReal,
    }

    ds = gdal.Open(img)
    prj = ds.GetProjection()
    srcband = ds.GetRasterBand(1)
    dst_layername = "Shape"
    drv = ogr.GetDriverByName("ESRI Shapefile")
    dst_ds = drv.CreateDataSource(shp_path)
    srs = osr.SpatialReference(wkt=prj)

    dst_layer = dst_ds.CreateLayer(dst_layername, srs=srs)
    raster_field = ogr.FieldDefn("id", type_mapping[srcband.DataType])
    dst_layer.CreateField(raster_field)
    gdal.Polygonize(srcband, srcband, dst_layer, 0, [], callback=None)
    del img, ds, srcband, dst_ds, dst_layer

regionGroup(img_array, min_size, no_data)

IdentifIies regions based on region growing method

Parameters:

Name Type Description Default
img_array array

The numpy array containing the image.

required
min_size int

The minimum number of pixels to be considered as a depression.

required
no_data float

The no_data value of the image.

required

Returns:

Name Type Description
tuple

The labelled objects and total number of labels.

Source code in lidar/slicing.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def regionGroup(img_array, min_size, no_data):
    """IdentifIies regions based on region growing method

    Args:
        img_array (np.array): The numpy array containing the image.
        min_size (int): The minimum number of pixels to be considered as a depression.
        no_data (float): The no_data value of the image.

    Returns:
        tuple: The labelled objects and total number of labels.
    """
    img_array[img_array == no_data] = 0
    label_objects, nb_labels = ndimage.label(img_array)
    sizes = np.bincount(label_objects.ravel())
    mask_sizes = sizes > min_size
    mask_sizes[0] = 0
    image_cleaned = mask_sizes[label_objects]
    label_objects, nb_labels = ndimage.label(image_cleaned)
    # nb_labels is the total number of objects. 0 represents background object.
    return label_objects, nb_labels

set_image_paras(no_data, min_size, min_depth, interval, resolution)

Sets the input image parameters for level-set method.

Parameters:

Name Type Description Default
no_data float

The no_data value of the input DEM.

required
min_size int

The minimum number of pixels to be considered as a depression.

required
min_depth float

The minimum depth to be considered as a depression.

required
interval float

The slicing interval.

required
resolution float

The spatial resolution of the DEM.

required

Returns:

Name Type Description
dict

A dictionary containing image parameters.

Source code in lidar/slicing.py
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def set_image_paras(no_data, min_size, min_depth, interval, resolution):
    """Sets the input image parameters for level-set method.

    Args:
        no_data (float): The no_data value of the input DEM.
        min_size (int): The minimum number of pixels to be considered as a depression.
        min_depth (float): The minimum depth to be considered as a depression.
        interval (float): The slicing interval.
        resolution (float): The spatial resolution of the DEM.

    Returns:
        dict: A dictionary containing image parameters.
    """
    image_paras = {}
    image_paras["no_data"] = no_data
    image_paras["min_size"] = min_size
    image_paras["min_depth"] = min_depth
    image_paras["interval"] = interval
    image_paras["resolution"] = resolution
    return image_paras

updateLevel(dep_list, obj_uid)

Updates the inner neighbors of each depression.

Parameters:

Name Type Description Default
dep_list list

A list containing depression info.

required
obj_uid int

The unique id of an object.

required

Returns:

Name Type Description
list

A list containing depression info.

Source code in lidar/slicing.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def updateLevel(dep_list, obj_uid):
    """Updates the inner neighbors of each depression.

    Args:
        dep_list (list): A list containing depression info.
        obj_uid (int): The unique id of an object.

    Returns:
        list: A list containing depression info.
    """
    for dep in reversed(dep_list):
        if len(dep.inNbrId) == 0:
            dep.level = 1
        else:
            max_children_level = 0
            for id in dep.inNbrId:
                if dep_list[id - 1 - obj_uid].level > max_children_level:
                    max_children_level = dep_list[id - 1 - obj_uid].level
            dep.level = max_children_level + 1
    return dep_list

writeObject(img_array, obj_array, bbox)

Writes depression objects to the original image.

Parameters:

Name Type Description Default
img_array array

The output image array.

required
obj_array array

The numpy array containing depression objects.

required
bbox list

The bounding box of the depression object.

required

Returns:

Type Description

np.array: The numpy array containing the depression objects.

Source code in lidar/slicing.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def writeObject(img_array, obj_array, bbox):
    """Writes depression objects to the original image.

    Args:
        img_array (np.array): The output image array.
        obj_array (np.array): The numpy array containing depression objects.
        bbox (list): The bounding box of the depression object.

    Returns:
        np.array: The numpy array containing the depression objects.
    """
    min_row, min_col, max_row, max_col = bbox
    roi = img_array[min_row:max_row, min_col:max_col]
    roi[obj_array > 0] = obj_array[obj_array > 0]
    return img_array

writeRaster(arr, out_path, template)

Saves an numpy array as a GeoTIFF.

Parameters:

Name Type Description Default
arr array

The numpy array containing the image.

required
out_path str

The file path to the output GeoTIFF.

required
template str

The file path to the template image containing projection info.

required

Returns:

Type Description

np.array: The numpy array containing the image.

Source code in lidar/slicing.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def writeRaster(arr, out_path, template):
    """Saves an numpy array as a GeoTIFF.

    Args:
        arr (np.array): The numpy array containing the image.
        out_path (str): The file path to the output GeoTIFF.
        template (str): The file path to the template image containing projection info.

    Returns:
        np.array: The numpy array containing the image.
    """
    no_data = 0
    # First of all, gather some information from the template file
    data = gdal.Open(template)
    [cols, rows] = arr.shape
    trans = data.GetGeoTransform()
    proj = data.GetProjection()
    # nodatav = 0 #data.GetNoDataValue()
    # Create the file, using the information from the template file
    outdriver = gdal.GetDriverByName("GTiff")
    # http://www.gdal.org/gdal_8h.html
    # GDT_Byte = 1, GDT_UInt16 = 2, GDT_UInt32 = 4, GDT_Int32 = 5, GDT_Float32 = 6,
    outdata = outdriver.Create(str(out_path), rows, cols, 1, gdal.GDT_UInt32)
    # Write the array to the file, which is the original array in this example
    outdata.GetRasterBand(1).WriteArray(arr)
    # Set a no data value if required
    outdata.GetRasterBand(1).SetNoDataValue(no_data)
    # Georeference the image
    outdata.SetGeoTransform(trans)
    # Write projection information
    outdata.SetProjection(proj)
    return arr

write_dep_csv(dep_list, csv_file)

Saves the depression list to a CSV file.

Parameters:

Name Type Description Default
dep_list list

A list containing depression info.

required
csv_file str

File path to the output CSV file.

required
Source code in lidar/slicing.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
def write_dep_csv(dep_list, csv_file):
    """Saves the depression list to a CSV file.


    Args:
        dep_list (list): A list containing depression info.
        csv_file (str): File path to the output CSV file.
    """
    csv = open(csv_file, "w")
    header = (
        "id"
        + ","
        + "level"
        + ","
        + "count"
        + ","
        + "area"
        + ","
        + "volume"
        + ","
        + "avg_depth"
        + ","
        + "max_depth"
        + ","
        + "min_elev"
        + ","
        + "max_elev"
        + ","
        + "children_id"
        + ","
        + "region_id"
        + ","
        + "perimeter"
        + ","
        + "major_axis"
        + ","
        + "minor_axis"
        + ","
        + "elongatedness"
        + ","
        + "eccentricity"
        + ","
        + "orientation"
        + ","
        + "area_bbox_ratio"
    )
    csv.write(header + "\n")
    for dep in dep_list:
        # id, level, size, volume, meanDepth, maxDepth, minElev, bndElev, inNbrId, nbrId = 0
        line = (
            "{},{},{},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{},{},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},{:.2f},"
            "{:.2f}".format(
                dep.id,
                dep.level,
                dep.count,
                dep.size,
                dep.volume,
                dep.meanDepth,
                dep.maxDepth,
                dep.minElev,
                dep.bndElev,
                str(dep.inNbrId).replace(",", ":"),
                dep.regionId,
                dep.perimeter,
                dep.major_axis,
                dep.minor_axis,
                dep.elongatedness,
                dep.eccentricity,
                dep.orientation,
                dep.area_bbox_ratio,
            )
        )
        csv.write(line + "\n")
    csv.close()